Just another WordPress.com site

Refrigerant

Refrigeran merupakan suatu media pendingin yang dapat berfungsi untuk menyerap kalor dari lingkungan atau untuk melepaskan kalor ke lingkungan. Sifat-sifat fisik termodinamika refrigerant yang digunakan dalam sistem refrigerasi perlu diperhatikan agar sistem dapat bekerja dengan aman dan ekonomis. Adapun sifat refrigerant yang baik adalah :
1. Tekanan penguapannya harus cukup tinggi, untuk menghindari kemungkinan terjadinya vakum pada evaporator dan turunya efisiensi volumetrik karena naiknya perbandingan kompresi.
2. Tekanan pengembunan yang rendah sehingga perbandingan kompresinya rendah dan penurunan prestasi kompresor dapat dihindari.
3. Kalor laten penguapan harus tinggi agar panas yang diserap oleh evaporator lebih besar jumlahnya, sehingga untuk kapasitas yang sama, jumlah refrigerant yang dibutuhkan semakin sedikit.
4. Koefisien prestasi harus tinggi, ini merupakan parameter yang penting untuk menentukan biaya operasi.
5. Konduktifitas thermal yang tinggi untuk menentukan karakteristik perpindahan panas.
6. Viskositas yang rendah dalam fasa cair atau gas. Dengan turunnya tahanan aliran refrigerant dalam pipa kerugian tekanannya akan berkurang.
7. Konstata dielektrik yang kecil, tahanan listrik yang besar serta tidak menyebabkan korosi pada material isolasi listrik.
8. Refrigeran hendaknya stabil dan tidak bereaksi dengan material yang digunakan sehingga tidak menyebabkan korosi.
9. Refrigeran tidak boleh beracun dan berbau.
10. Refrigeran tidak boleh mudah terbakar dan meledak.
11. Dapat bercampur dengan minyak pelumas tetapi tidak merusak dan mempengaruhinya.
12. Harganya murah dan mudah dideteksi jika terjadi kebocoran.
(RyderSystem)

Refrigerant selanjutnya akan berkaitan dengan proses refrigerasi. Pengkondisian udara merupakan salah satu aplikasi penting teknologi refrigerasi. Teknologi ini bisa menghasilkan dua hal esensial yang diperlukan dalam pengkondisan udara; yakni pendinginan (cooling) dan pemanasan (heating). Pengkondisian udara adalah usaha untuk mengatur temperatur dan kelembaban udara agar menghasilkan kenyamanan termal (thermal comfort) bagi manusia. Pengkondisian udara lengkap meliputi pemanasan (heating), pendinginan (cooling), pengaturan kelembaban (humidifying dan dehumidifying), dan pertukaran udara (ventilating). Sedangkan pengkondisian udara skala kecil umumnya dilakukan tanpa mengikutsertakan pengaturan kelembaban. Pengkondisian udara saat ini telah menjadi standard bangunan, publik ataupun privat dalam berbagai skala, di berbagai penjuru dunia. Untuk daerah yang mengalami empat musim, terjadi perubahan fungsi pengkondisian udara dari pemanasan (heating) pada saat musim dingin menjadi pendinginan (cooling) pada saat musim panas. Sedangkan pada daerah khatulistiwa seperti Indonesia, pada umumnya fungsi pengkondisian udara adalah pada mode pendinginan saja. Mesin pengkondisian udara yang bekerja sebagai pendingin biasanya disebut sebagai AC (Air Conditioning), sedangkan pada saat bekerja sebagai pemanas disebut sebagai pompa kalor (heat pump). Kedua fungsi tersebut bisa menyatu dalam satu mesin (mesin refrigerasi), bisa juga terpisah menjadi dua bagian; tergantung pada mekanisme yang digunakan.
Mesin refrigerasi siklus kompresi uap memiliki fleksibilitas penggunaan, yakni bisa berfungsi sebagai mesin pendingin (AC) ataupun pompa kalor (heat pump) dengan mengubah arah aliran refrigerannya. Mesin refrigerasi jenis ini juga berukuran cukup kompak, sehingga tidak memerlukan ruang yang besar. Di bawah ini akan dijelaskan prinsip kerja mesin refrigerasi siklus kompresi uap. Mesin refrigerasi kompresi uap terdiri atas empat komponen utama, yakni kompresor, kondensor, katup ekspansi, dan evaporator. Kondensor dan evaporator sesungguhnya merupakan penukar kalor (heat exchanger) yang berfungsi mempertukarkan kalor diantara dua fluida, yakni antara refrigerantdengan fluida luar (bisa berupa air ataupun udara).
Pada proses pertama, kompresor menaikkan tekanan uap refrigerant. Kenaikan tekanan ini diikuti dengan kenaikan temperatur uap refrigerant. Pada tingkat keadaan (TK) 2, uap refrigerant berada pada kondisi uap super-panas. Proses selanjutnya, uap refrigerant memasuki kondensor dan mendapatkan pendinginan dari kondensor. Pendinginan ini terjadi akibat pertukaran panas antara uap refrigerant dengan fluida luar. Refrigerant keluar dari kondensor pada TK 3 dalam kondisi cair jenuh, atau bisa juga dalam kondisi cair sub-dingin. Refrigerant kemudian memasuki katup ekspansi. Pada TK 4, refrigerant berada dalam kondisi campuran air dan uap. Karena refrigerant berada pada tekanan jenuh (tekanan penguapan), maka dia akan mengalami penguapan, hukum alam menyatakan bahwa penguapan membutuhkan energi, terjadilah penyerapan energi termal dari luar evaporator yang menyebabkan efek pendinginan oleh mesin refrigerasi.
Pada mesin refrigerasi siklus kompresi uap, fungsi kondensor dan evaporatorbisa dibalik dengan mengubah arah aliran refrigerant. Dengan demikian, mesin ini bisa berfungsi sebagai pendingin di musim panas dan pemanas di musim dingin. Pada saat berfungsi sebagai mesin pendingin, umumnya mesin ini disebut sebagai mesin Air Conditioning (AC) dan saat berfungsi sebagai mesin pemanas, mesin ini disebut sebagai heat pump/pompa kalor (Berita Iptek).

Diagram salah satu jenis penukar panas.
Penukar panas sangat luas dipakai dalam industri seperti kilang minyak, pabrik kimia maupun petrokimia, industri gas alam, refrigerasi, pembangkit listrik. Salah satu contoh sederhana dari alat penukar panas adalah radiator mobil di mana cairan pendingin memindahkan panas mesin ke udara sekitar (Anonim, 2012)

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

Awan Tag

%d blogger menyukai ini: